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Stochastic integrate-and-fire (IF) neuron models have found widespread applications in computational neu-
roscience. Here we present results on the white-noise-driven perfect, leaky, and quadratic IF models, focusing
on the spectral statistics (power spectra, cross spectra, and coherence functions) in different dynamical regimes
(noise-induced and tonic firing regimes with low or moderate noise). We make the models comparable by
tuning parameters such that the mean value and the coefficient of variation of the interspike interval (IST)
match for all of them. We find that, under these conditions, the power spectrum under white-noise stimulation
is often very similar while the response characteristics, described by the cross spectrum between a fraction of
the input noise and the output spike train, can differ drastically. We also investigate how the spike trains of two
neurons of the same kind (e.g., two leaky IF neurons) correlate if they share a common noise input. We show
that, depending on the dynamical regime, either two quadratic IF models or two leaky IFs are more strongly
correlated. Our results suggest that, when choosing among simple IF models for network simulations, the

details of the model have a strong effect on correlation and regularity of the output.

DOI: 10.1103/PhysRevE.80.031909

I. INTRODUCTION

Neurons communicate information via short-lasting dis-
charges of the electrical potential across their membrane. The
excitability mechanism by which these spikes are generated
relies on the dynamics of voltage-gated ion channels in the
neural membrane and is well understood [1,2]. To study the
dynamics of large neural networks, a detailed description of
the single neuron’s dynamics, although in principle possible,
is impractical and one must resort to simpler models of neu-
ral spike generation governed by only one or two dynamical
variables per neuron [3]. In particular in stochastic versions
that take into account the large variability of neural spiking,
these models can be also helpful to study basic aspects of
signal transmission by single neurons.

One class of commonly used simplified models comprises
integrate-and-fire (IF) neurons with white noise current. In IF
models a spike is generated if the voltage reaches a firing
threshold (inducing also a reset of the voltage); the voltage
obeys the one-dimensional dynamics

b= f(v) + (1) + w+ \2D&), (1)

where s(r) is a time-dependent stimulus while w and D are
the mean and the noise intensity of the input current [&(7) is
white Gaussian noise]. Variants of the model differ by the
function f(v). A fine-tuned choice of f(v) may permit a
rather accurate prediction of both experimental subthreshold
voltage fluctuations and spike statistics under noisy stimula-
tion in vitro and in vivo (see [4—8] for some recent convinc-
ing examples). Simple choices such as a constant, linear, or
quadratic function leading to the perfect IF (PIF), leaky IF
(LIF), or quadratic IF (QIF) model, respectively, allow for an
analytical calculation of one or the other spike statistics and
may be also numerically simpler to simulate in large-scale
networks. Models such as Eq. (1) have been used in analyti-
cal studies of (i) conditions for asynchronous or oscillatory
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activity in recurrent networks [9-12]; (ii) the transmission of
rapid signals [13—16]; (iii) the variability of spontaneous ac-
tivity [17-20]; (iv) noise-induced resonances in the sponta-
neous activity [19,21] and in the response to external stimuli
[14,22]; and (v) oscillations in recurrent networks induced by
spatially correlated stimuli [23-25] to name but a few.

Most of the phenomena studied depend strongly on the
choice of f(v). As an example, consider the effect of coher-
ence resonance, which refers to the existence of an optimal
noise intensity D that maximizes the regularity of the spike
train, seen, for instance, as a minimum of the coefficient of
variation (CV) of the interspike interval (ISI) vs noise inten-
sity: only the leaky [19,21] but not the perfect or quadratic IF
models [20] show such a minimum. It has, furthermore, been
shown that LIF and QIF differ strongly in their response to
fast (high-frequency) periodic signals [15,16]. Despite these
discussions, however, a systematic comparison among the
commonly used IF models is still missing. In this paper, we
want to fill this gap.

If one wishes to compare different IF models, the first
question is how the input parameters u and D should be
chosen in the respective model. Already the most basic firing
statistics of a certain IF model, the firing rate (quantifying
the spike train’s intensity) and the interspike interval’s coef-
ficient of variation (characterizing the variability of the spik-
ing) depend strongly and in a model-specific way on u and
D [17,19,20,26,27]. The authors recently showed that this
basic firing statistics, i.e., rate and CV, determine uniquely
the input parameters p and D for the three most common IF
models mentioned above (perfect, leaky, and quadratic IF
neurons). This offers a natural way of unambiguously defin-
ing firing regimes for these models. Moreover, setting the
firing regime by means of prescribing rate and CV allows for
a fair comparison of the higher-order statistics of different IF
models. In this way, we can, for example, consider an LIF
neuron and a QIF neuron that both show a moderate firing
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rate (e.g., 10 Hz) and medium variability (say, a CV of about
0.5) and compare how these two neurons differ in their spon-
taneous and driven activity. This approach of assuming the
same basic firing statistics and comparing higher-order sta-
tistics is complementary to a previous setup which was en-
tirely based on the firing rate dependence on input current
[15].

What is the most important output statistics of noisy IF
neurons once the firing rate and CV are fixed? In most of the
above analytical approaches, two single-neuron characteris-
tics appear to be essential: (i) the spike train power spectrum
of spontaneous activity and (ii) the response to weak stimuli
[e.g., to a weak periodic signal s(f)=g cos(wt)]. In a more
recent theory of recurrent networks [25], the knowledge of a
third simple property is needed that goes beyond the proper-
ties of a single neuron: the degree of correlations that can be
induced in two uncoupled neurons that share some common
noisy stimulus. This latter property has attracted attention of
its own and has been recently studied experimentally (see
[28] and references therein) and theoretically [25,29,30] in
particular in the limit of a weak input correlation.

In the present paper, we study the spontaneous power
spectrum, the linear-response function (susceptibility), and
the two-neuron correlations induced by a common stimulus
for the perfect, leaky, and quadratic IF models and a variety
of firing regimes. In Sec. II, we introduce the three IF models
studied and define the firing regimes. In Sec. III, we present
results on spontaneous activity of single neurons. We show
that typically IF neurons present similar power spectra when
they are in the same firing regime. In Sec. IV, we study the
dynamical response of single neurons. We recover character-
istic differences between the susceptibility of the LIF and
QIF discussed previously (see, e.g., [15]), as well as between
LIF and PIF [31], and show in addition that the spectral
coherence between spike train and external signal is basically
low pass for all three models. Section V is devoted to the
study of two neurons driven in part by common noise. In this
case, linear-response theory leads to a good approximation
for the cross spectra between the two output spike trains
when the common noise makes up only a small fraction of
the total noise. Coherence functions of the two output spike
trains are again low pass and resemble qualitatively the
input-output coherence functions discussed before. Finally,
we discuss the correlation coefficient of the spike count for
the LIF and QIF models for a weak common noise and show
analytically in Appendix A that this correlation coefficient is
equal to the input correlation for the PIF model. We summa-
rize our results and draw some conclusions in Sec. VI.

II. MODELS AND FIRING REGIMES
A. Integrate-and-fire neuron models

In this paper we consider IF neurons subjected to stochas-
tic voltage-independent input current, i.e., additive white
Gaussian noise which can be justified in the so-called diffu-
sion approximation [26,32,33]. We will consider exclusively
models driven by white noise, setting the term s(7) in Eq. (1)
to zero; a fraction of the input noise will later be regarded as
a stimulus or as common noise.
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For a leaky integrate-and-fire neuron, the current balance
equation reads as

CmV= -g(V=V)+ i+ \/Ef(f),

if V()=V, then spike at r;=¢t and V—V,, (2)

where C,, is the capacitance of the cell membrane, g; and V;
are leak conductance and leak reversal potential, respec-

tively, and & and D are the mean and the intensity of the
white Gaussian input noise current. The second line de-
scribes the fire-and-reset rule upon reaching the threshold
Vi

With the simple transformation v=(V-V;)/(V,,—V,) and
the new parameters 7,,=C,,/g; (membrane time constant),

m=pu/ g, and DA=5/gi, this reads as
T0=—U4+u+ V2b§(t),

if v(t)=v, then spike at f;=r and v —uv,, (3)

where the threshold and reset are now at v,;=1 and v,=0.
When measuring time in multiples of the membrane time
constant, i.e., f=t/ 7,,, this model is equivalent to Eq. (1) with

a rescaled noise intensity D=D/7,, and with f(v)=-v. Note
that u+V2DE(7) in this rescaled model has not the physical
dimensions of an electric current anymore and that is why
we will refer to it here with the more general term “input.”

If the leak term g;(V—V,) is small compared to the mean
input current, we may be justified to neglect it. All previous
transformations can be repeated (including the division by
the leak conductance g;), and thus we end up with

TU = (i + \/Ef(t),

if v(t)=v, then spike at t;=r and v —v,, (4)

which corresponds after rescaling of time again to Eq. (1) but
this time with f(v)=0. This is the PIF model with white
noise (also known as random-walk model of neural firing)
[32,34,35].

If the noise-free neuron is close to a dynamical bifurca-
tion, specifically, close to a saddle-node bifurcation from qui-
escence to tonic firing, another form of the integrate-and-fire
neuron contains a quadratic nonlinearity [12,18,20,36-38]

CaV=a(V-Vo)’+ i+ 5&0),

if V()=c then spike at ;= and V——o0. (5)

In this case one chooses threshold and reset at infinity be-
cause the slow dynamics in V makes the exact (large but
finite) values of V, and V,, irrelevant. Note also that V in this
case can be but has not to be a voltage—in general, it is the
variable of the center manifold [38]; correspondingly, the
factor C,, on the left-hand side can be taken as a convention.
For infinite reset and threshold values, this dynamics can be
brought into a simplified standard form by choosing a new
variable v=a(V-V,)/g, and new parameters u=a/ gi and

D=Dd*/ g}:
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T 0 =0+ u+ V2ﬁ§(r),

if wv(f)=o then spike at f;=r and v ——, (6)

which corresponds in rescaled time f=¢/7,, and noise inten-
sity D=D/ 7, to Eq. (1) with f(v)=v?. In simulations of this
standard form of this quadratic (QIF) neuron, one uses large
but finite threshold and reset such that—by further increasing
their values—the results (ISI statistics, spike train power
spectra, etc.) do not change anymore within the desired ac-
curacy (say, curves do not change in line thickness). For the
effect of finite values of reset and threshold values on the ISI
statistics, see [20].

Note that both in the PIF and the QIF the introduction of
the membrane time scale is arbitrary—we could equally well
compare to PIF and QIF models in which 7,, would be re-
placed by a multiple or a fraction of this time (changing then
also the input parameters, of course). The choice of 7, has
been made previously for the PIF [44], and we follow here
this convention also for the QIF.

Our approach of comparing different IF models here is
complementary to others in which the input current is as-
sumed to be known and the parameters of the specific mod-
els [e.g., Egs. (2) and (5)] are fitted to yield a given ISI
statistics. Here we start with the standard models Egs. (3),
(4), and (6) and ask for the input parameters that yield a
given rate (in units of the inverse membrane time constant)
and a given CV. Although this may seem to be unusual in an
experimental situation where one has control over the input
current, it appears to be a reasonable approach in vivo where
the effective input current and its noise intensity is set by the
synaptic background and is thus unknown.

B. Firing regimes

In order to make different IF models comparable, we must
first specify the correspondence between their parameters.
For instance, in a comparison between LIF and QIF, we
should first decide which pair (D, u) for the first model cor-
responds to which pair (D,u) for the second. Here we do
this by defining different firing regimes in terms of fixed rate
and coefficient of variation of the spike trains. In order
words, D and u in different models are chosen as to yield a
given firing rate

1
r=—: (7)
()
and a given coefficient of variation
o W= ©
n

where T is the interspike interval. Throughout this paper (-)
denotes averaging over realizations of the stochastic process.
Note that, since time is measured in units of the membrane
time constant, all the rates are in units of the inverse of this
constant. For instance, for a membrane time constant of 10
ms, a nondimensional rate of 1 corresponds to 100 Hz.

The pair of parameters (D,u) for a given model that
yields a certain regime is therefore determined by the inter-
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FIG. 1. Contour lines for rate (black) and CV (gray) in param-
eter space for the different models. Regimes A-I are defined by
intersections of these contour lines.

section between one contour line for the rate and one contour
line for the CV. However, it is not clear a priori whether at
most one such intersection exists. This problem was recently
addressed by us [39]. We showed that, given fixed rate and
CV, there can be at most one associated pair (D, u) for the
three IF models studied in this paper.

Figure 1 displays some contour lines for the rate and CV
for the three models considered here. There are different
ways to determine these contour lines. They can be obtained
analytically (see [39]). Here we have determined them nu-
merically, as explained in Sec. IIIl B and in Appendix B. In
Fig. 1 we also define nine specific regimes, labeled A-I,
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which we study in some detail here. The corresponding val-
ues for the rate and CV in these regimes are

Regime A B CcC D E F G H I

Rate 1 1 1
CV 0.1

07 07 07 04 04 0.1
03 05 01 03 05 03 05 07

III. SINGLE NEURONS: SPONTANEOUS ACTIVITY
A. Measures

The output spike train y can be modeled as a sum of delta
peaks at the time instants when the voltage described by Eq.
(1) reaches the threshold value:

¥ =3 8-1), 9)

where ¢; is the instant when the jth spike occurs.

The spontaneous activity of the IF neurons studied here
corresponds to a renewal point process. Each interspike in-
terval is an independent random variable. In processes of this
type, all the information on the statistics is contained in the
probability density of the ISI.

In this paper, we will quantify the neuron’s correlation
statistics by means of power and cross spectra. We start by
defining the Fourier transform of the zero-average spike train
as

T
y(f) = f dr' ™ [y (') = (y(e"))]. (10)
0

The power spectrum of the spike train will be the quantity
used in this paper to characterize the spontaneous activity of
the IF neurons. It is given by

1
SyU)=;m;<ii*>, (11)

where T is the realization time window. For renewal point
processes, the relation between the power spectrum of the
spike train and the Fourier transform of the probability den-
sity of the ISI, F(f), is given by [40]

L 1-[F(HP
M -FOP
We note that analytical expressions for F(f) are known in the
cases of PIF and LIF (equivalently, often the Laplace trans-
form is stated that yields the Fourier transform for a negative

imaginary argument). In this work, we will only use that for
the PIF, which is given by [31,41]

B .
FO(f) = exp{(v,h S 2’;”)] |

(13)

Sy(f) = (12)

B. Results

In Fig. 2, we show the power spectra for the three models
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FIG. 2. Power spectra of the spike trains for the three models in
the nine firing regimes defined in Fig. 1.

in regimes A-I. These spectra were obtained analytically via
Egs. (12) and (13) for the PIF and numerically for LIF and
QIF using the algorithm recently introduced by Richardson
[42]. We observe that the power spectra of different models
in the same regime are in general very similar. In regimes A
and D, which are characterized by low variability (CV equal
to 0.1), the power spectra virtually coincide. In the other
regimes, the power spectra coincide in the limits of low and
large frequencies and deviate to some extent in the
intermediate-frequency range.

The coincidence of the power spectra for different models
in the same regime in the low and large frequency limits is
not surprising. In fact, for renewal point processes one can
show [40] that

lim S,(f) = rR? (14)
f—=0
and
lim S,(f) =r. (15)
f*)OO

Since each regime is defined by fixing the rate and CV, we
conclude from Egs. (14) and (15) that the power spectra for
different models should indeed coincide in these limits. In
fact, we have used these relations and the above-mentioned
algorithm for the numerical determination of the power spec-
trum [42] to obtain the contour lines displayed in Fig. 1.

To quantify the differences between the power spectra of
different models, we define the maximal relative difference
AS{;" between the power spectra of models j and k over all
frequencies as
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The contour lines for rate and CV are the same as those depicted in Fig. 1. »
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In Fig. 3 we plot ASE,’IF LIE ASfIF QF and AS;IF QUF The first
observation we make is that the power spectra of the PIF
matches those of the LIF and QIF in the parameter regions
where the PIF is a good model, i.e., for large n and small D
[cf. Figs. 3(a) and 3(b)]. Second, when comparing the LIF
with the QIF [Fig. 3(c)], we conclude that the power spectra
of these models are practically coincident if the noise inten-
sity is small and their relative difference increases with D,
displaying moderate differences for very large noise inten-
sity. There is a nontrivial dependence on w as well, but the
dependence on D is the dominant one. Remarkably, this rule
of thumb whereby the power spectra differences between
LIF and QIF increase with the noise intensity is valid for
both tonic (uqrE>>0) and noise-induced (uqr<0) firing re-
gimes.

e
AS*;, = maxf<

IV. SINGLE NEURONS: DYNAMICAL RESPONSE

A. Measures

In this section, we are interested in the response of single
neurons to a small stimulus. This can be accomplished in
several ways, e.g., by adding a small term with sinusoidal
time dependence to Eq. (1). Alternatively, and this is the
procedure adopted here, one can regard a fraction of the
noise term in Eq. (1) as the external stimulus. This choice

will allow for a straightforward connection between the
single neuron’s response presented in this section and two-
neuron correlations under common noise discussed in Sec. V.
We thus rewrite Eq. (1) as

b= f(v) + p+\2(1 - )D& +\2eDE(),  (17)

where the noise terms &,(¢) and &.(¢) are white Gaussian and
described by

(1) =(&(0)) =(§(&.(1)) =0,

(E(DE(1)) =(&(NE& (1)) = ot —1'), (18)

and ¢ (playing the role of a relative signal amplitude) is a
number between 0 and 1. When addressing the single neu-
ron’s response, we read Eq. (17) as describing a certain neu-
ron subjected to intrinsic noise V2(1—c)D&(t) and driven by
an external (noisy) stimulus:

s(1) = \2eDE (7). (19)

To characterize the neuron’s response to the stimulus, we use
the cross spectrum between the spike train y and the stimulus

s(1),
Sys(f) = lim l<)7§*>, (20)
T*}OOT

and the coherence function with respect to s,
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FIG. 4. Gain (|x|) as a function of frequency for the three mod-
els in regimes A-I.
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B. Single neuron’s response

The cross spectra [Eq. (20)] can be calculated, for small c,
from linear-response theory. The idea is to consider the term
\2¢DE, as a small perturbation of the term w in the stochas-
tic system

U=f(v) +m+V2(1 = c)DE(1). (22)

This does not seem feasible at first sight since &, has infi-
nitely large variance. To show that linear response can be
applied in this case, we formally consider &. as a bandpass
white noise with flat spectrum of height 2¢D and cut-off
frequency fiax Its variance is then equal to 2¢Df,,.. This
variance can be kept small even in the limit of f,,, —®
(white noise) if we impose that ¢ decreases sufficiently fast,
ie., c<u/2Df . Therefore &, can be indeed considered a
small perturbation. Linear-response theory [43] then leads to
the following approximation:

G0 = xp L (IN2eDE(D), (23)

where xp , is the susceptibility of the system which can be
estimated from the cross spectrum between input signal and
spike train via the well-known relation

Sy Timy_ o ((FV2eDE) ).
XD.u= 2¢D 2¢D '

(24)

2
Y(f) = M 1) Closed analytical forms for y exist for the PIF [44] and LIF
S8 [13,14] and are given, respectively, by
Rt 2
w> 1 =\1-8mifD/u®
where S,=2cD is the power spectrum of s. One should note XPIF = v —v 4mifD (25)
that the coherence function is restricted to the interval th="r
0<y(fH<1. and
J
. [~ [~
r27Tlf/V5 Dy i1 (= v,)/ND] = €°Dy i [ (= v,)/\D]
XLIF = ; = = (26)
27if =1 Dyd (- vy)ND] = e®Dyid (= v,)ND]
|
where the rate r for the LIF is given by C. Results

— ((wv)n2D -1
r(u,D) = \"Wf dze“erfe(z) | (27)
(M_Uth)/\“‘E

the abbreviation 6 reads as

52 VR U+ 20(vs =)

4D

(28)

and D,(z) is the parabolic cylinder function [45]. For the
QIF, x can be obtained numerically from the Fokker-Planck
equation [46].

Since Eq. (24) is valid for arbitrary ¢, the cross spectrum
Sy, 1s fully characterized by the susceptibility xp ,. We have
studied the susceptibility for the three models in regimes
A-I. The susceptibility for the PIF was determined using Eq.
(25), while the susceptibility for the LIF and QIF was deter-
mined by integrating the Fokker-Planck equation with the
algorithm presented in [42,46]. It turns out that this numeri-
cal integration is faster than the evaluation of Eq. (26) using
standard softwares.

In Fig. 4, we show the gain |x| as a function of the fre-
quency for the three models in regimes A-I. The gain is
typically larger for the LIF and is in all regimes at least one
order of magnitude smaller for the QIF. In regimes A and D,
where the firing is most regular, the gain displays peaks for
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FIG. 5. Phase lag of the linear response [i.e., —arg(|x])] as a
function of frequency for the three models in regimes A-I. Due to
numerical constraints, the phase of the QIF model is not shown in
the large frequency range, where it asymptotes to 180°.

the LIF (close to the firing frequency and its higher harmon-
ics) and QIF (only close to its firing frequency) but not for
the PIF. As observed in [15], in the large frequency limit the
gain decays as a power law with exponent 0.5 for the LIF
and 2 for the QIF. From Eq. (25), we see that the exponent
for the PIF is also 0.5.

In Fig. 5, we display the phase ¢ for the different models.
It is defined such that y=|x|e'?. For the PIF, it is in all re-
gimes close to zero for small frequencies and increases
monotonically. Its saturation value attained in the limit
f— is ¢$=45°. Except for the limits of small and large
frequencies, the behavior of the LIF can be markedly differ-
ent. In particular in regimes A and D, the phase oscillates
around zero in a certain range enclosing the eigenfrequency.
It first becomes negative. Close to the eigenfrequency it
changes signal, and repeats this oscillatory behavior a few
times before approaching its asymptotic value of 45°. Fi-
nally, the behavior of the phase for the QIF is similar to the
one of the LIF, except that the asymptotic value at large
frequencies is remarkably larger—equal to 180°. The
asymptotic behaviors for the LIF and QIF were also dis-
cussed in [15].

We now turn to the coherence function 7 that we show in
multiples of ¢ for the different models in Fig. 6. Although the
gain of the three models differed by more than one order of
magnitude and showed different resonances, their coherence
functions are rather similar and display a low-pass behavior.
Therefore PIF, LIF, and QIF transmit most information in a
low-frequency band of the stimulus. Going to the limit of
vanishing frequencies, the PIF will transmit most informa-
tion: as can be explicitly shown [31], 7 for the PIF ap-
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FIG. 6. Coherence function 97 for the three models in regimes
A-1. Note that, in regime I, the coherence of the QIF is larger than
that of LIF for small frequencies.

proaches the maximum value c in the limit of zero frequency,
a feature not shared by neither LIF nor QIF. Furthermore, the
coherence function at low frequencies can be larger for the
LIF as compared to the QIF (regimes A-H) and, conversely,
larger for the QIF as compared to the LIF (regime I). As we
will argue in the next section, this feature also affects which
of these models will display larger two-neuron correlations
under common noise stimulus.

V. TWO-NEURON CORRELATIONS UNDER COMMON
STIMULUS

A. Measures

We now study two neurons of the same model subjected
to individual noise and also to common noise. For this pur-
pose we consider the following modification of Eq. (17):

0;=f(0) + p+\2(1 = )D& +\2eDE(D),  (29)

where the subscript i stands for the neuron’s index and can
attain the values 1 and 2. Equations (18) remain valid, and
we now also have

(&(D&(1")) =0. (30)

To characterize the correlations between the output spike
trains of two different neurons, we will use their cross spec-
trum,

N U
Sylyz(.f) = 71_11};10}<y1y2>’ (31)

and their coherence function,
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() = Bl (32)
SylSYz

Another important measure of correlation between two spike
trains is the correlation coefficient of the spike count. The
spike counts n; and n, are the numbers of spikes elicited by

neurons 1 and 2, respectively, over a time window of length
T. Their correlation coefficient is defined as

pr= (n1n2> - <”1><n2>
") = )Ny = (ny)?

and its range lies between —1 and 1. In the important limit of
large time windows, one can prove the following relation
between this correlation coefficient and the zero frequency
values of the cross- and power-spectra of the spike train [28]:

li li Syl,"z(-f)
p=lm pr=IIMm—F———.
re ' =08, (DS, ()

(33)

(34)

B. Small input correlation

We now calculate S, , (f) in the case of small c. Using
Eq. (23), we obtain

NN PP N PP
Sylyz(f) = ;ﬂo}«(yo’z&l)@)& = }LTT:O}<<Y1>§]<)’2>§Z>§C

2, (35)

= 2cD|)(D,M

where the averages were taken first over &, (with frozen &,
and &), then over &, (with frozen &,), and finally over real-
izations of &. Equation (35) has been already used in the
literature [24,25].

Since the limit of y at zero frequency is given by j—r, for
small input correlation Eq. (34) has the simple form [28]

dr |?

2cD
du
rR?
Equations (21), (24), (34), and (35) imply that, for small c,

the correlation coefficient of the spike count is equal to the
limit value of the coherence function 9 at zero frequency.

(36)

C. Results

Our analysis of the two-neuron correlation relies prima-
rily on simulations of the stochastic differential equations
[Eq. (29)] and the evaluation of the cross spectra [Eq. (31)].
This is computationally considerably more demanding than
the simple integration of the Fokker-Planck equation and the
evaluation of the analytical expressions leading to the results
presented in the previous sections. For this reason we now
restrict ourselves to the analysis of regimes C and I only.
However, this suffices to lead us to three important conclu-
sions, which we now state. First, as Figs. 7 and 8 show,
linear-response theory leads to good approximations for the
cross spectra Syl_V2 for small ¢ (e.g., c=0.1). Second, we note
from Fig. 9 that, as the input correlation ¢ approaches 1, the
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FIG. 7. Cross spectra between the two output spike trains of
neurons under common noise stimulus divided by the input corre-
lation ¢ (left panels) and coherence function of the two output spike
trains divided by c? (right panels) in regime C. PIF (black), LIF
(dark gray), and QIF (light gray) are compared. In the left panels,
the circles (PIF), squares (LIF), and diamonds (QIF) correspond to
the prediction from Eq. (35).

convergence of S, , to S, and of I'?(f) to the maximum
value 1 (for all f) is very slow. This convergence is more
pronouncedly slow for large frequencies, which corresponds
to the fact that a tiny amount of individual noise is enough to
produce a finite difference in the spiking times of the two
neurons. Third, the coherence function in the important limit
of small frequencies is larger for the LIF in regime C as
compared to the QIF and, conversely, larger for the QIF as
compared to the LIF in regime I.

In view of the discussion in Sec. A, we conclude that the
correlation coefficient p of the spike count in the limit of
large time windows is larger for the LIF than for the QIF in
regime C and larger for the QIF than for the LIF in regime 1.
In Fig. 10, this is shown to occur for ¢ in the whole range
0=c=1. We also observe that an approximately linear de-
pendence holds in a fairly broad range in regimes C and I for
both models.

In order to provide a complete picture of the correlation
coefficient not only for two specific regimes but rather in a
fairly broad region of the parameter space, we show in Figs.
11 and 12 the ratio p/c as a function of u and D for the LIF
and QIF, respectively. They were estimated on the basis of
Eq. (36) and are expected to be correct for small input cor-
relation c. For the LIF, we have calculated the terms in Eq.
(36) from the exact analytical expressions (see, e.g., [39]).
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Regime |
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FIG. 8. Cross spectra between the two output spike trains of
neurons under common noise stimulus divided by the input corre-
lation ¢ (left panels) and coherence function of the two output spike
trains divided by ¢? (right panels) in regime I. PIF (black), LIF
(dark gray), and QIF (light gray) are compared. In the left panels,
the circles (PIF), squares (LIF), and diamonds (QIF) correspond to
the prediction from Eq. (35).

For the QIF we resorted to the numerical algorithm of Refs.
[42,46].

We note from that for both LIF and QIF the correlation
coefficient falls sharply when the Poissonian firing regime
(low D and w) is approached. Also remarkable is the fact
that, at least in the studied parameter regions, the correlation
coefficient for the LIF can approach 1 (if x and D are large),
but the correlation coefficient for the QIF seems to have a
considerably smaller upper bound (below 0.7). Let us now
describe some simple limits of p/c. For the QIF, this quantity

14 1
12 08
1
08 0.6
0.6 0.4
04
02F ] 02
041 i o 076 i i0

FIG. 9. Power and cross spectra of the output spike trains of two
QIF neurons under common noise stimulus (a) and coherence func-
tion of the two output spike trains (b) in regime C for ¢=1-¢, with
e=1073.
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FIG. 10. Correlation coefficient of the spike count vs input cor-
relation for large time window for LIF and QIF in firing regimes I
(a) and C (b).

approaches the value 2/3 in the limit of strong input
(u>0) and weak noise (D<1). In the excitable regime
(u<0) at weak noise (D<<|u|*?), i.e., when the firing is
close to Poissonian, p/c approaches zero.

In Fig. 13, we show the ratio between the correlation co-
efficients of LIF and QIF. The correlation coefficient is larger
for the LIF in most parts of the analyzed parameter space.
Only when w and D are small, i.e., when the firing is close to
Poissonian, is the correlation coefficient larger for the QIF
than for the LIF.

Finally we turn to the simplest case of the PIF. For this
model, one can show that the correlation coefficient is given
simply by c. In the terminology introduced in [28], the cor-
relation susceptibility is equal to 1 for the PIF. Using Eq.
(35), we obtain

o
2

OCO0O0000000
oshwrON®©O =

FIG. 11. (Color online) Correlation coefficient (divided by ¢) of
the spike counts at large time windows for the LIF as a function of
both D and w.
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FIG. 12. (Color online) Correlation coefficient (divided by ¢) of
the spike counts at large time windows for the QIF as a function of
both D and pu.
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—0 Sy

Using Egs. (21) and (24), as well as the fact that
lim,_, Y*(f)=1 for the PIF (see [31]), we obtain

pPH = ¢. (38)

p (37)

Remarkably, this linear law, in principle valid only for small
¢, can be shown for the PIF to be valid for all ¢ €[0,1], as
we show in Appendix A.

VI. CONCLUSIONS

We have provided an extensive comparison of three im-
portant IF models in different firing regimes, as determined
by given firing rate and CV. We have shown that the sponta-
neous activity of the LIF and QIF neurons virtually coincide
in regimes characterized by weak input noise and deviates
moderately for larger values of the input noise. The dynami-
cal response behavior, however, strongly differs among dif-

1.6
1.5
1.4
1.3
1.2
1.1
1

0.9
0.8
0.7
1 10 100
D (QIF)

FIG. 13. (Color online) Ratio between the correlation coeffi-
cients of the spike counts of LIF and QIF in the limit of large time
windows. The contour lines for rate and CV are the same as those
depicted in Fig. 1.
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ferent models, even in the same firing regimes. This was
discussed in the limit of large stimulus frequencies in [15]
and extended here for the entire frequency range.

An important feature of the single neuron’s response char-
acteristics is that, depending on the firing regime, it can be
stronger at a given frequency for the LIF as compared to the
QIF or the other way around. We have shown that this im-
plies, as long as the linear-response theory holds true (i.e.,
for small c¢), that either two LIF or two QIF neurons can
display larger low-frequency correlations when driven in part
by common noise. Altogether our findings indicate that the
successful use of a certain IF model to reproduce the spon-
taneous activity of biological neurons does not at all guaran-
tee that the correlations in the activity of a population of such
neurons will be also well described. More important for the
latter are the dynamical response characteristics of the single
neuron to an external stimulus.

We have also characterized a large portion of the physi-
ologically relevant parameter space of the studied IF models
and concluded that the correlations in the spike trains of two
LIFs, as characterized by the correlation coefficient for the
spike count, are in most cases larger than the corresponding
correlations of two QIFs. An important exception, however,
exists: when the firing approaches the Poissonian regime, the
correlations between QIF neurons become larger than those
of two LIF neurons.

It constitutes an interesting open problem to perform the
same studies as done here for other IF models, e.g., the ex-
ponential IF model introduced in [15]. Finally, an extensive
comparison between type I [18,20,47] and type II [48-50]
neurons as regards to spontaneous activity, dynamical re-
sponse, and two-neuron correlation under common stimulus
is still lacking and is expected to shed light on the problem
of how large neuronal populations encode and transmit in-
formation.
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APPENDIX A: CORRELATION COEFFICIENT FOR THE
PIF FOR ARBITRARY ¢

Here we show that the correlation coefficient for the PIF
is for an input correlation ¢ € [0, 1] given by

pPH = ¢, (A1)

For this purpose, we track the nonreset voltage of the PIF

described by
5= ot 1= (D) + Ve (o)

and observe that, in the limit of large times, the relative error
in approximating the spike count n;(r) by this unresetted volt-
age v,(t) approaches zero, i.e.,

lim ni(t) —v(1) _
e (1) +0,(1)/2

(A2)

(A3)

Equation (A3) holds true because the difference between the
spike count and the nonreset voltage is a number between 0
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and 1 (assuming v,,—v,=1). In other words, the numerator
appearing in the limit of Eq. (A3) remains bounded between
0 and 1 for all #, while the denominator goes to infinity as
t— 0,

Approximating the spike count n,(f) by this unresetted
voltage v;(¢), we obtain an alternative formula for the corre-
lation coefficient for the spike count of the PIF:

(PIF) _ 4 (01 (NVy(1)) = (v, (1) Vs (1)) .
==\ (U0 = (01 (D)) (W30 = (0a(1))
(A4)

p

To calculate the right-hand side of Eq. (A4), we use the
formal solution of Eq. (A2), given by

vi(1) = f (1= c&(t) +\c&(t)dr' . (AS)
0

Substituting Eq. (A5) into Eq. (A4) and using Egs. (18) and
(30), we obtain Eq. (Al).
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APPENDIX B: NUMERICAL METHODS

The contour lines for the rate for both LIF and QIF, as
well as the respective power spectra, were obtained by re-
sorting to the numerical algorithm of Ref. [42]. For the LIF
(QIF), the rate and CV were calculated for the points on a
roughly 2000 X 2000 (103 X 10%) grid over the (D, u) region
displayed in Fig. 1. The integration step for the numerical
evaluation of the Fokker-Planck equation (see [42]) was
equal to 10~ for the LIF and 1073 for the QIF, with the
threshold and reset at *=o being numerically replaced by
*500 for the latter. The CV was estimated by assuming that
the power spectrum at a frequency 10° times smaller than the
firing rate was equal to rR* [see Eq. (14)] for both LIF and
QIF.

The gain and phase for the linear response of LIF and QIF
were computed using the algorithm of Ref. [46], with the
same integration steps (as well as reset and threshold values
for the QIF) as above. Finally, the cross spectra Syly2 were
obtained from a fast Fourier transform algorithm after inte-
grating the stochastic differential Eq. (29) with a time step of
1073. For the LIF, a correction based on the probability that
the voltage reached the threshold and decreased below it
within the time interval dr was implemented (see [51]).
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